@@ -19,7 +19,7 @@ This layer creates a convolution kernel that is convolved with the layer input t
...
@@ -19,7 +19,7 @@ This layer creates a convolution kernel that is convolved with the layer input t
#### Arguments
#### Arguments
***input_shape**: The shape of the input data for one sample.
***input_shape**: The shape of the input data for one sample. This is required only if this layer is the first (non-input) layer of the network.
***num_filters**: Integer. The number of output filters in the convolution (i.e. the number of output channels).
***num_filters**: Integer. The number of output filters in the convolution (i.e. the number of output channels).
***kernel_size**: An integer or 1D-array of 2 integers. Specifies the width and depth of the convolution kernel. Providing a scalar integer specifies the same value for all dimensions. `Default = 3`.
***kernel_size**: An integer or 1D-array of 2 integers. Specifies the width and depth of the convolution kernel. Providing a scalar integer specifies the same value for all dimensions. `Default = 3`.
***stride**: An integer or 1D-array of 2 integers. Specifies the strides of the convolution along each spatial dimension. Providing a scalar integer specifies the same value for all dimensions. `Default = 1`.
***stride**: An integer or 1D-array of 2 integers. Specifies the strides of the convolution along each spatial dimension. Providing a scalar integer specifies the same value for all dimensions. `Default = 1`.